Pembelajaran Digital Dengan Kecerdasan Buatan (AI): Korelasi AI Terhadap Motivasi Belajar Siswa
DOI:
https://doi.org/10.31949/educatio.v9i3.5761Abstract
Penggunaan Kecerdasan Buatan (AI) dalam konteks pembelajaran digital telah menjadi tren dalam pendidikan modern. Penelitian ini bertujuan untuk menggambarkan implikasi penggunaan AI terhadap motivasi belajar siswa. Motivasi belajar siswa merupakan faktor kunci dalam meningkatkan pencapaian akademik dan pengembangan diri. Dengan memanfaatkan teknologi AI dalam proses pembelajaran, kita dapat mengidentifikasi peran AI dalam meningkatkan motivasi belajar siswa. Dengan menggunakan metode gabungan (kualitatif dan kuantitatif), penelitian ini melibatkan survei (kuisioner) dan analisis data dari berbagai sumber literatur yang relevan. Hasil penelitian menunjukkan bahwa AI dapat berkontribusi secara positif terhadap motivasi belajar siswa melalui beberapa cara. Pertama, AI dapat menyediakan umpan balik personalisasi yang membantu siswa memahami kemajuan mereka secara lebih baik. Kedua, AI dapat merancang pengalaman pembelajaran yang disesuaikan dengan gaya belajar individu, sehingga meningkatkan minat dan keterlibatan siswa dalam pembelajaran. Ketiga, AI dapat mengidentifikasi kesulitan belajar siswa dan menyediakan bantuan tambahan secara real-time, sehingga mengurangi frustrasi siswa dan meningkatkan motivasi mereka untuk mengatasi tantangan. Namun, penelitian ini juga mengidentifikasi beberapa tantangan yang perlu diatasi dalam penggunaan AI dalam pembelajaran digital. Salah satunya adalah masalah privasi dan keamanan data siswa yang harus dikelola dengan cermat. Selain itu, pengembangan dan implementasi teknologi AI dalam konteks pendidikan memerlukan investasi yang signifikan dalam pelatihan guru dan infrastruktur teknologi. Dengan demikian, penelitian ini menyoroti pentingnya mengintegrasikan AI dengan bijak dalam pendidikan dan menekankan perlunya perhatian terhadap aspek-aspek etis dan praktis.
Keywords:
Kecerdasan buatan, pembelajaran digital, teknologi pembelajaranDownloads
References
Chatterjee, S., & Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: a quantitative analysis using structural equation modelling. Education and Information Technologies, 25(5), 3443–3463. https://doi.org/10.1007/S10639-020-10159-7/TABLES/6
Chiu, T. K. F., & Chai, C. S. (2020). Sustainable Curriculum Planning for Artificial Intelligence Education: A Self-Determination Theory Perspective. Sustainability 2020, Vol. 12, Page 5568, 12(14), 5568. https://doi.org/10.3390/SU12145568
Conijn, R., Kahr, P., & Snijders, C. (2023). The Effects of Explanations in Automated Essay Scoring Systems on Student Trust and Motivation. Journal of Learning Analytics, 10(1), 37–53. https://doi.org/10.18608/jla.2023.7801
Edwards, C., Edwards, A., Stoll, B., Lin, X., & Massey, N. (2019). Evaluations of an artificial intelligence instructor’s voice: Social Identity Theory in human-robot interactions. Computers in Human Behavior, 90, 357–362. https://doi.org/10.1016/J.CHB.2018.08.027
Fernández-Martínez, C., Hernán-Losada, I., & Fernández, A. (2021). Early Introduction of AI in Spanish Middle Schools. A Motivational Study. KI - Kunstliche Intelligenz, 35(2), 163–170. https://doi.org/10.1007/S13218-021-00735-5/TABLES/3
Fitria, T. N. (2021). Grammarly as AI-powered English Writing Assistant: Students’ Alternative for Writing English. Metathesis: Journal of English Language, Literature, and Teaching, 5(1), 65. https://doi.org/10.31002/METATHESIS.V5I1.3519
Guo, K., Zhong, Y., Li, D., & Chu, S. K. W. (2023). Effects of chatbot-assisted in-class debates on students’ argumentation skills and task motivation. Computers & Education, 203, 104862. https://doi.org/10.1016/J.COMPEDU.2023.104862
H., S. M. (2018). How to use artificial intelligence in the English language learning classroom. Indian Journal of Public Health Research & Development, 9(9), 557–561.
Klamma, R., de Lange, P., Neumann, A. T., Hensen, B., Kravcik, M., Wang, X., & Kuzilek, J. (2020). Scaling mentoring support with distributed artificial intelligence. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12149 LNCS, 38–44. https://doi.org/10.1007/978-3-030-49663-0_6
Koraishi, O. (2023). Teaching English in the Age of AI: Embracing ChatGPT to Optimize EFL Materials and Assessment. Language Education and Technology, 3(1). https://langedutech.com/letjournal/index.php/let/article/view/48
Lai, C.-L. (2021). Exploring University Students’Preferences for AI-Assisted Learning Environment. Educational Technology & Society, 24(4), 1–15.
Lee, Y. F., Hwang, G. J., & Chen, P. Y. (2022). Impacts of an AI-based chabot on college students’ after-class review, academic performance, self-efficacy, learning attitude, and motivation. Educational Technology Research and Development, 70(5), 1843–1865. https://doi.org/10.1007/S11423-022-10142-8/METRICS
Lengkoan, F., Andries, F. A., & Tatipang, D. P. (2022). A Study on Listening Problems Faced By Students of Higher Education. Globish: An English-Indonesian Journal for English, Education, and Culture, 11(1), 41–50. https://doi.org/10.31000/GLOBISH.V11I1.5106
Lengkoan, F., & Rombepajung, P. (2022). Teachers’ Perception of Online Learning in The Pandemic Era. Jurnal Lingua Idea, 13(1). https://doi.org/10.20884/1.jli.2022.13.1.4301
Liando, N. V. F., Dallyono, R., Tatipang, D. P., & Lengkoan, F. (2023). Among English, Indonesian and local language: Translanguaging practices in an Indonesian EFL classroom. Indonesian Journal of Applied Linguistics, 13(1). https://doi.org/10.17509/IJAL.V13I1.58270
Liando, N. V. F., Rorimpandey, R. S., Kumayas, T. A., & Tatipang, D. P. (2022). International Students’ Motivation and Self-Confidence in Learning Indonesian. Hong Kong Journal of Social Sciences, 60. http://www.hkjoss.com/index.php/journal/article/view/613
Liando, N. V. F., Tatipang, D. P., & Lengkoan, F. (2022). A Study of Translanguaging Practices in an EFL Classroom in Indonesian Context: A Multilingual Concept. Research and Innovation in Language Learning, 5(2), 167–185. https://doi.org/10.33603/RILL.V5I2.6986
Liando, N. V. F., Tatipang, D. P., & Wuntu, C. N. (2023). TPACK Framework Towards 21st Century’s Pre-Service English Teachers: Opportunities and Challenges in Application. Edumaspul: Jurnal Pendidikan, 7(1), 1799–1815. https://doi.org/10.33487/EDUMASPUL.V7I1.6479
Lumentut, Y. L., & Lengkoan, F. (2021). The Relationships of psycholinguistics In Acquisition and Language Learning. E-Clue Journal of English, Culture, Language, Literature,and Education, 9(1), 17–29. https://doi.org/10.53682/eclue.v9i1.1894
Martín-Núñez, J. L., Ar, A. Y., Fernández, R. P., Abbas, A., & Radovanović, D. (2023). Does intrinsic motivation mediate perceived artificial intelligence (AI) learning and computational thinking of students during the COVID-19 pandemic? Computers and Education: Artificial Intelligence, 4, 100128. https://doi.org/10.1016/J.CAEAI.2023.100128
Ouyang, F., Zheng, L., & Jiao, P. (2022). Artificial intelligence in online higher education: A systematic review of empirical research from 2011 to 2020. Education and Information Technologies, 27(6), 7893–7925. https://doi.org/10.1007/S10639-022-10925-9/TABLES/4
Pataranutaporn, P., Leong, J., Danry, V., Lawson, A. P., Maes, P., & Sra, M. (2022). AI-Generated Virtual Instructors Based on Liked or Admired People Can Improve Motivation and Foster Positive Emotions for Learning. Proceedings - Frontiers in Education Conference, FIE, 2022-October. https://doi.org/10.1109/FIE56618.2022.9962478
Pelenkahu, N., Ali, M. I., & Tatipang, D. P. (2023). Curriculum Development. Penerbit Lakeisha.
Pu, S., Ahmad, N. A., Khambari, M. N. M., Yap, N. K., & Ahrari, S. (2021). Improvement of Pre-Service Teachers’ Practical Knowledge and Motivation about Artificial Intelligence through a Service-learning-based Module in Guizhou, China: A Quasi-Experimental Study. Asian Journal of University Education, 17(3), 203–219. https://doi.org/10.24191/AJUE.V17I3.14499
Qawaqneh, H., Ahmad, F. B., & Alawamreh. (2023). The Impact of Artificial Intelligence-Based Virtual Laboratories on Developing Students. Motivation Towards Learning Mathematics. International Journal of Emerging Technologies in Learning (IJET), 18(14), 1863–0383. https://doi.org/10.3991/ijet.v18i14.39873
Rodrigues, L., Palomino, P. T., Toda, A. M., Klock, A. C. T., Pessoa, M., Pereira, F. D., Oliveira, E. H. T., Oliveira, D. F., Cristea, A. I., Gasparini, I., & Isotani, S. (2023). How Personalization Affects Motivation in Gamified Review Assessments. International Journal of Artificial Intelligence in Education, 1–38. https://doi.org/10.1007/S40593-022-00326-X/TABLES/8
Sandu, N., & Gide, E. (2019). Adoption of AI-chatbots to enhance student learning experience in higher education in india. 2019 18th International Conference on Information Technology Based Higher Education and Training, ITHET 2019. https://doi.org/10.1109/ITHET46829.2019.8937382
Sun, Z., Anbarasan, M., & Praveen Kumar, D. (2021). Design of online intelligent English teaching platform based on artificial intelligence techniques. Computational Intelligence, 37(3), 1166–1180. https://doi.org/10.1111/COIN.12351
Tatipang, D. P., Manuas, M. J., Wuntu, C. N., Rorintulus, O. A., & Lengkoan, F. (2022). EFL Students’ Perceptions of the Effective English Teacher Characteristics. Jurnal Pendidikan Bahasa Inggris Undiksha, 10(1), 23–30. https://doi.org/10.23887/jpbi.v10i1.4
Tsz, D., Ng, K., Kai, S., & Chu, W. (2021). Motivating Students to Learn AI through Social Networking Sites: A Case Study in Hong Kong. Online Learning, 25(1), 195–208. https://doi.org/10.24059/olj.v25i1.2454
Wang, R. (2019). Research on Artificial Intelligence Promoting English Learning Change. Proceedings of the 3rd International Conference on Economics and Management, Education, Humanities and Social Sciences (EMEHSS 2019), 392–395. https://doi.org/10.2991/EMEHSS-19.2019.79
Wang, X. (2021). College english teaching innovation under artificial intelligence. ACM International Conference Proceeding Series. https://doi.org/10.1145/3465631.3465844
Wang, Y. Y., & Wang, Y. S. (2019). Development and validation of an artificial intelligence anxiety scale: an initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619–634. https://doi.org/10.1080/10494820.2019.1674887
Wu, C. H., Liu, C. H., & Huang, Y. M. (2022). The exploration of continuous learning intention in STEAM education through attitude, motivation, and cognitive load. International Journal of STEM Education, 9(1), 1–22. https://doi.org/10.1186/S40594-022-00346-Y/FIGURES/8
Xia, Q., Chiu, T. K. F., & Chai, C. S. (2022). The moderating effects of gender and need satisfaction on self-regulated learning through Artificial Intelligence (AI). Education and Information Technologies, 28(7), 8691–8713. https://doi.org/10.1007/S10639-022-11547-X/METRICS
Xu, B., & Margevica-Grinberga, I. (2021). A Discourse on Innovation of English Teaching in China from the Perspective of Artificial Intelligence. Cypriot Journal of Educational Sciences, 16(5), 2313–2323. https://doi.org/10.18844/cjes.v16i5.6347
Yan, S., & Yang, Y. (2021). Education Informatization 2.0 in China: Motivation, Framework, and Vision. ECNU Review of Education, 4(2), 410–428. https://doi.org/10.1177/2096531120944929/ASSET/IMAGES/LARGE/10.1177_2096531120944929-FIG1.JPEG
Yang, S. J. H., Ogata, H., Matsui, T., & Chen, N. S. (2021). Human-centered artificial intelligence in education: Seeing the invisible through the visible. Computers and Education: Artificial Intelligence, 2, 100008. https://doi.org/10.1016/J.CAEAI.2021.100008
Yilmaz, R., & Karaoglan Yilmaz, F. G. (2023). The effect of generative artificial intelligence (AI)-based tool use on students’ computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence, 4, 100147. https://doi.org/10.1016/J.CAEAI.2023.100147
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education 2019 16:1, 16(1), 1–27. https://doi.org/10.1186/S41239-019-0171-0
Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., Liu, J. B., Yuan, J., & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity, 2021. https://doi.org/10.1155/2021/8812542
Zhang, H., Lee, I., Ali, S., DiPaola, D., Cheng, Y., & Breazeal, C. (2022). Integrating Ethics and Career Futures with Technical Learning to Promote AI Literacy for Middle School Students: An Exploratory Study. International Journal of Artificial Intelligence in Education, 33(2), 290–324. https://doi.org/10.1007/S40593-022-00293-3/TABLES/5
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Selviana Ronsumbre, Titik Rukmawati, Adi Sumarsono, Richard Semuel Waremra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
An author who publishes in the Jurnal Educatio FKIP UNMA agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- The author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgment of its initial publication in this journal.
- The author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work