PENERAPAN DATA MINING UNTUK MENENTUKAN KELAYAKAN KENDARAAN SEPEDA MOTOR BEKAS MENGGUNAKAN ALGORITMA C4.5
DOI:
https://doi.org/10.31949/infotech.v11i2.15338Abstract
Determining the feasibility of used motorcycles is one of the challenges for companies in selecting attributes that cover various factors, such as physical condition, maintenance history, and reasonable price. In this study, the researcher aims to analyze the existing problems and provide decision results by applying the C4.5 algorithm to determine the feasibility of used motorcycles based on relevant data. The C4.5 algorithm has the capability to build decision trees to automate and improve the accuracy of the feasibility determination process. In this research, attributes such as motorcycle model, year, engine, kilometers, fuel type, modifications, engine overhaul, oil type, transmission, engine type, and displacement are used as determining variables.
Furthermore, to avoid overfitting that may occur due to overly complex decision trees, the researcher also applies pruning techniques to the C4.5 algorithm. Pruning functions to trim insignificant branches of the tree so that the model becomes simpler. With pruning, it is expected that the resulting decision tree will be not only accurate but also efficient, enabling the feasibility determination process of used motorcycles to be conducted optimally. Therefore, after applying pruning techniques, the model achieved an accuracy of 72.41%, precision of 68.42%, recall of 86.67%, and F1-score of 76.47%.
Keywords:
Motorcycle, Data Mining, Decision TreeDownloads
References
Adriansa, M., Yulianti, L., & Elfianty, L. (2022). Analisis Kepuasan Pelanggan Menggunakan Algoritma C4. 5. Jurnal Teknik Informatika UNIKA Santo Thomas, 115–121.
Azra, M. Z., Purbasari, I. Y., & Rahmat, B. (2021). Penerapan Algoritma C4. 5 untuk Grading Kualitas Motor Bekas di UD. Permata Motor. Jurnal Informatika Dan Sistem Informasi, 2(1), 93–98.
Dinata, R. K., Safwandi, S., Hasdyna, N., & Azizah, N. (2020). Analisis k-means clustering pada data sepeda motor. INFORMAL: Informatics Journal, 5(1), 10–17.
Eska, J. (2018). Penerapan data mining untuk prediksi penjualan wallpaper menggunakan algoritma C4. 5.
Febby Wilyani, Qonaah Nuryan Arif, & Fitri Aslimar. (2024). Pengenalan Dasar Pemrograman Python Dengan Google Colaboratory. Jurnal Pelayanan Dan Pengabdian Masyarakat Indonesia, 3(1), 08–14. https://doi.org/10.55606/jppmi.v3i1.1087
Madiono, L., & Susanto, A. (n.d.). Sistem Pendukung Keputusan Kelayakan Kredit Sepeda Motor Honda di Nusantara Sakti Cabang Sukun Semarang Dengan Metode Scoring System. Techno. COM, 12(3), 168–174.
Mardi, Y. (2017). Data mining: Klasifikasi menggunakan algoritma c4. 5. Jurnal Edik Informatika Penelitian Bidang Komputer Sains Dan Pendidikan Informatika, 2(2), 213–219.
Ni Made Satvika Iswari, Nunik Afriliana, Eddy Muntina Dharma, & Ni Putu Widya Yuniari. (2024). Enhancing Aspect-based Sentiment Analysis in Visitor Review using Semantic Similarity. Journal of Applied Data Sciences, 5(2), 724–735.
Ni Wayan Oktha Pratiwi, Nengah Widya Utami, & I Gede Juliana Eka Putra. (2022). KLASIFIKASI PENENTUAN PENERIMA BANTUAN SOSIAL TUNAI (BST) MENGGUNAKAN ALGORITMA C4.5 DI DESA KERAMAS, GIANYAR BALI. JINTEKS (Jurnal Informatika Teknologi Dan Sains), 4(3), 101–107.
Pradana, T. (2018). SISTEM PENDUKUNG KEPUTUSAN KELAYAKAN DAN ANALISA RESIKOPEMBERIAN KREDIT SEPADA MOTOR DENGAN ALGORITMA C4. 5 PADA ADIRA FINANCE BANGIL. SPIRIT, 6(1).
Purbasari, I. Y., Nugroho, B., & Implementasi, D. A. N. (2013). Benchmarking Algoritma Pemilihan Atribut Pada Klasifikasi Data Mining. Snastia, 47â, 54.
Setio, P. B. N., Saputro, D. R. S., & Winarno, B. (2020). Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4. 5. PRISMA, Prosiding Seminar Nasional Matematika, 3, 64–71.
Sinaga, T. H., Wanto, A., Gunawan, I., Sumarno, S., & Nasution, Z. M. (2021). Implementation of Data Mining Using C4. 5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM. Journal of Computer Networks, Architecture and High Performance Computing, 3(1), 9–20.
Subagyo, A. (2007). Studi kelayakan. Elex Media Komputindo.
Sukriadi, S., Ismail, I., & Andzar, A. M. (2023). Penerapan Text Mining Dalam Klasifikasi Judul Skripsi Yang Diusulkan Mahasiswa Menggunakan Metode Naïve Bayes. Jurnal Ilmiah Sistem Informasi Dan Teknik Informatika (JISTI), 6(2), 184–196.
Sulianta, F. (2023). Basic Data Mining from A to Z. Feri Sulianta.
Zai, C. (2022). Implementasi Data Mining Sebagai Pengolahan Data. Jurnal Portal Data, 2(3).

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ni Kadek Juliani, Ni Made Satvika Iswari, Nengah Widya Utami

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.