ANALISIS SENTIMEN PENGGUNA PADA APLIKASI BANK DIGITAL KROM DENGAN ALGORITMA SUPPORT VECTOR MACHINE
DOI:
https://doi.org/10.31949/infotech.v10i2.11801Abstract
The rapid development of financial technology has driven the widespread adoption of digital banking applications, including the KROM app, among the public. This study aims to analyze user sentiment toward the KROM Digital Bank application using the Support Vector Machine (SVM) algorithm. User review data was collected from Google Play, then processed through data preprocessing steps such as text cleaning, tokenization, and removing irrelevant words. The SVM algorithm is used to classify user sentiment into positive and negative categories. The results indicate that SVM performs well in classifying user sentiment, with an accuracy of 84,38%. This analysis is expected to provide insights for app developers to improve service quality based on user perceptions and experiences.
Keywords:
text mining, Sentiment Analysis, Digital Bank, support vector machineDownloads
References
Abdusyukur, F. (2023). PENERAPAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) UNTUK KLASIFIKASI PENCEMARAN NAMA BAIK DI MEDIA SOSIAL TWITTER. KOMPUTA : Jurnal Ilmiah Komputer dan Informatika, 12(1).
Adelia Irawan, F., Rialdy Atmadja, A., Wahana, A., Informatika, T. & Sunan Gunung Djati Bandung, U. (2024). Analisis Sentimen Ulasan Aplikasi Bank Digital Menggunakan Algoritma Naive Bayes. Dalam Journal of Computer Science and Information Technology E-ISSN (Vol. 4, Nomor 2).
Arrafiq, M. S. & Kurniawan, R. (2024). Analisis Sentimen Pengguna Terhadap Layanan Aplikasi Seabank Indonesia di Instagram Menggunakan Metode Support Vector Machine. Journal of Information System Research, 5(4).
Fandhilah & Ardiansyah, A. (2023). SATIN-Sains dan Teknologi Informasi Analisis Sentimen Aplikasi Quizizz pada Google Play Store Menggunakan Naïve Bayes. SATIN – Sains dan Teknologi Informasi, 9(2), 176–183.
Masitoh, N., Rosidah, E. & Kurniawati, A. (2023). PENGARUH LAYANAN DIGITAL BANKING TERHADAP KEPUASAN NASABAH PADA PT BANK NEGARA INDONESIA (PERSERO) TBK KANTOR CABANG TASIKMALAYA. Jurnal Perbankan dan Keuangan, 4(1), 11–16.
Mauliza, R. N. & Sipayung, Y. R. (2024). Penerapan Text Mining Dalam Menganalisis Pendapat Masyarakat Terhadap Pemilu 2024 Pada Media Sosial X Menggunakan Metode Naive Bayes. Technomedia Journal, 9(1), 1–16.
Muzayyanah, A. B., Pawening, R. E. & Arifin, Z. (2024). ANALISIS SENTIMEN PADA ULASAN APLIKASI EHADRAH DI GOOGLE PLAYSTORE MENGGUNAKAN SUPPORT VECTOR MACHINE. Dalam Idealis: Indonesia Journal Information System (Vol. 7, Nomor 2).
Nurhafida, S. I. & Sembiring, F. (2022). Analisis Sentimen Aplikasi Novel Online Di Google Play Store Menggunakan Algoritma Support Vector Machine (SVM). Dalam Jurnal Sains Komputer & Informatika (J-SAKTI (Vol. 6, Nomor 1).
Nurrohmat, M. A. & SN, A. (2019). Sentiment Analysis of Novel Review Using Long Short-Term Memory Method. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 13(3), 209.
Rinjani, A. N., Aulia Nandika, K., Dahnaily, S., Nafisiyah, M., Fauziyah, I. S., Ekonomi, F., Bisnis, D., Sultan, U. & Tirtiyasa, A. (2024). Pengaruh Bank Digital Terhadap Minat Gen Z. Indonesian Journal of Economics, 1(4).
Wahyudi, R., Kusumawardhana, G., Purwokerto, A., Letjend, J., Soemarto, P., Purwanegara, K., Purwokerto, T. & Banyumas, K. (2021). Analisis Sentimen pada review Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine. JURNAL INFORMATIKA, 8(2).
Wijaya, N. & Setiawan Panjaitan, E. (2024). Analisis Sentimen Ulasan Aplikasi Instagram di Google Play Store: Pendekatan Multinomial Naive Bayes dan Berbasis Leksikon. Technology and Science (BITS), 6(2).

Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Maulian Saputra, Sri Wahyuni

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.